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Abstract 
We describe. a system for the automated certification of safety properties of NASA 

software. The system uses Hoare-style program verification technology to generate proof 
obligations which are then processed by an automated first-order theorem prover (ATP). 
We discuss the unique requirements this application places on the ATPs, focusing on au- 
tomation, proof checking, and usability. For full automation, however, the obligations must 
be aggressively preprocessed and simplified, and we demonstrate how the individual sim- 
plification stages, which are implemented by rewriting, influence the ability of the ATPs 
to solve the proof tasks. Our results are based on 13 certification experiments that lead to 
more than 25,000 proof tasks which have each been attempted by Vampire, Spass, e-setheo, 
and Otter. The proofs found by Otter have been proof-checked by IVY. 

1 Introduction 

Software certification aims to show that the software in question achieves a certain level of 
quality, safety, or security. Its result is a cemjicate, i.e., independently checkable evidence of 
the properties claimed. Certification approaches vary widely, ranging from code reviews to full 
formal verification, but the highest degree of confidence is achieved with approaches that are 
b a d  on formai me&& and use iogic auci GiwieEi pici+ig t~ CO~;SZ~GC~ 

We have developed a certification approach which uses Hoare-style techniques to demon- 
strate the safety of aerospace software which has been automatically generated from high-level 
specifications. Our core idea is to extend the code generator so that it simultaneously generates 
code and the detailed annotations, e.g., loop invariants, that enable a safety proof. A verification 
condition generator (VCG) processes the annotated code and produces a set of safety obliga- 
tions, which are provable if and only if the code is safe. An automated theorem prover (ATP) 
then discharges these obligations and the proofs, which can be verified by an independent proof 
checker, serve as certificates. This approach largely decouples code generation and certification 
and is thus more scalable than, e.g., verifying the generator or generating code and complete 
safety proofs in parallel. 

In this paper, we evaluate the extent to which the current generation of ATPs is capable 
of supporting the formal certification of software. In our view, this covers three main aspects. 
First, full automation is crucial since the practicability of our approach hinges on it. Second, 

- the ability to generate proof objects and to carry out proof checking is essential to create explicit 
certificates. Third, there are a range of traceability issues which have a significant bearing on 
the ability of an ATP to create meaningful certificates. 

~dficiX-~s.  
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Program certification is a demanding application for ATPs because the number of proof 

main. However, in our case there are several factors which make a successful ATP application 
possible. First, we certify separate aspects of safety and not full functional correctness. This 
separation of concerns allows us to show non-trivial properties like matrix symmetry but results 
in more tractable obligations. Second, the extensions of the code generator are specific to the 
safety properties to be certified and to the algorithms used in the generated programs. This 
allows us to fine-tune the annotations which, in turn, also results in more tractable obligations. 
Third, we aggressively simplify the obligations before they are handed over to the prover, taking 
advantage of domain-specific knowledge. 

In this paper, we evaluate three hypotheses. The first hypothesis is that the current generation 
of high-performance ATPs is-in principle-already powerful enough for practical application 
in program certification. The second hypothesis is that ATPs can still not be considered entirely 
as black boxes but require careful integration with the application at hand; in particular, the 
application must carefully preprocess the proof tasks to make them more tractable. The final 
hypothesis is that proof checkers for first-order logic have not yet reached the same level of ma- 
turity as the ATPs themselves, despite the fact that proof checking is, prima facie, conceptually 
simpler than proof finding. 

We have tested our hypotheses by running five high-performance provers on seven different 
versions of the safety obligations resulting from certifying five different safety policies for four 
different programs-in total more than 25,000 obligations per prover. In Section 2 we give 
an overview of the system architecture, describing the safety policies as well as the generation 
and preprocessing of the proof tasks. In Section 3, we outline the experimental set-up used to 
evaluate the theorem provers over a range of different preprocessing levels. The detailed results 
are given in Section 4; they confirm our first two hypotheses: the provers are generally able to 
solve the emerging obligations but only after substantial preprocessing. However, for almost 
all programs and all polices, a few hard obligations remain, and a successful certification (i.e., 
proof of all obligations) can be achieved only after even more tuning. Section 5 then discusses 
the proof checking experiments, and Section 6 looks at traceability issues. Finally, Section 7 
draws some conclusions. 

Conceptually, this paper continues the work described in [33, 341 but the actual implemen- 
tation of the certification system has been completely revised and substantially extended. We 
have expanded the range of both algorithms and safety properties which can be certified; in 
particular, our approach is now fully integrated with the AUTOFILTER system [35] as well as 
with the AUTOBAYES system [l I] and the certification process is now completely automated. 
We have also implemented a new generic VCG which can be customized for a given safety pol- 
icy and which directly processes the internal code representation instead of Modula-2 as in the 
previous version. All these improvements and extensions to the underlying framework result in 
a substantially larger experimental basis than reported before. A shorter version of this paper 
appears as [5]. 
Related Work Our approach is related to proof-carrying code (PCC) [21]. PCC works on 
the machine-code level instead of the source-code level (as we do) and concentrates on very 
simple safety policies (mainly array-bounds safety) which leads to comparatively simple proof 
obligations. PCC also spawned an entire cottage industry of proof checkers, e.g., [I]; however, 
these use various higher-order logics and so are not applicable for our purposes. 

KIV [24, 251 is an interactive verification environment which can use ATPs but heavily 

_-_---- ~ obligations is po&gti_ally very large- and__prwzgr. venGi&kc) is generally a. hard problem do- .... . . 
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Figure 1: Certification system architecture 

relies on term rewriting and user guidance. Sunrise [14] is a M y  automatic system but uses 
custom-designed tactics in HOL to discharge the obligations. Houdini [9] is a similar system. 
There the generated proof obligations are discharged by ESC/Java but again, this relies on a 
significant amount of user interaction. 

2 System Architecture 

Our certification tool is built as an extension to the AUTOBAYES and AUTOFILTER program 
synthesis systems. AUTOBAYES works in the statistical data analysis domain and generates pa- 
rameter learning programs while AUTOFILTER generates state estimation code based on vari- 
ants of the K h a n  filter algorithm. Figure 1 gives an overview of the overall system architec- 
ture. Both underlying synthesis systems take as input a high-level problem specification and 
generate code that impiements the specification. This process is based on hc: r c p i c d  applica- 
tion of schemas. Schemas are generic algorithms which are instantiated in a problem-specific 
way after their applicability conditions have been proven to hold for the given problem spec- 
ification. The synthesizers first generate Ctt-style intermediate code which is then compiled 
down into any of the different supported languages and runtime environments. 

For the certification tool, we extended the schemas such that the synthesis systems generate 
code that is marked up with annotations relevant to the chosen safety policy. These annotations 
encode local safety information which is then propagated throughout the program. In the next 
stage, the analysis is carried out by a VCG applying rules from the safety policy to generate 
verification conditions which are then simplified by a rewrite system. Finally, certz9cation is 
achieved by sending these simplified verification conditions to an automated theorem prover 
and checking the resulting proofs. 

The individual components are described in some detail in the subsequent sections. We 
distinguish trusted and untntsted components, shown in red (dark grey) and blue (light grey), 
respectively. In particular, the correctness b f  our certification system does not depend on the 
correctness of the two largest subsystems: the synthesizer, and the theorem prover; instead, we 
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Table 1: Safety conditions for different policies 

symm 
norm 

need only trust the safety policy, the VCG, and the proof checker. 
This lets us adopt an approach to certification which we call product-oriented certijcation, 

in contrast to process-oriented approaches, which rely on the qualification (Le., verification) of 
the tools being used. A product-oriented approach is more feasible when using complex tools 
like theorem provers and hence is more scalable. 

Vmatrix-exp m E c . Vz, j . m[i, j ]  = m[j, i] 
‘d vectorv E c . 

matrices 
arithmetic, summations size(v) v[i] = 1 

2.1 Safety Properties and Safety Policies 

The certification tool automatically certifies that a program satisfies a given safety property, i.e., 
an operational characterization that the program “does not go wrong”. It uses a corresponding 
safety policy, i.e., a set of Hoare-style proof rules and auxiliary definitions which are specifically 
designed to show that programs satisfy the safety property of interest. The distinction between 
safety properties and policies is explorcd ifi [ 3 ] .  

We further distinguish between language-specijic and domain-specijic properties and poli- 
cies. Language-specific properties can be expressed in the constructs of the underlying pro- 
gramming language itself (e.g., array accesses), and are sensible for any given program written 
in the language. Domain-specific properties typically relate to high-level concepts outside the 
language (e.g., matrix multiplication), and must thus be expressed in terms of program frag- 
ments. Since these properties are specific to a particular application domain, the corresponding 
policies are not applicable to all programs. 

We have defined five different safety properties and implemented the corresponding safety 
policies. Array-bounds safety (array) requires each access to an array element to be within the 
specified upper and lower bounds of the array. Variable initialization-before-use (init) ensures 
that each variable or individual array element has been assigned a defined value before it is used. 
Both are typical examples of language-specific properties. Matrix symmetry (syrnrn) requires 
certain two-dimensional arrays to be symmetric. Sensor input usage (in-use) is a variation of 
the general init-property which guarantees that each sensor reading passed as an input to the 
Kalman filter algorithm is actually used during the computation of the output estimate. These 
two examples are specific to the Kalman filter domain. The final example ( n o m )  ensures that 
certain one-dimensional arrays represent normalized vectors, i.e., that their contents add up to 
one; it is specific to the data analysis domain. 

The safety policies can be expressed in terms of two families of definitions. For each com- 
mand the policy defines a safety condition and a substitution, which captures how the command 
changes the environmental information relevant to the safety policy. The rules of the safety 
policy can then be derived systematically from the standard Hoare rules of the underlying pro- 
gramming language [3]. 

From our perspective, the safety conditions are the most interesting aspect since they have 
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e- (seZ(id-init, i ,  j )  = znit A seZ(tmplinit, i, j )  = init) } safety condition 

Figure 2: Structure of a safety obligation 

the greatest bearing on the form of the proof obligations. Table 1 summarizes the different 
conditions and the domain theories needed to reason about them. Both variable initialization 
and usage as well as array bounds certification are logically simple and rely just on proposi- 
tional and simple arithmetic reasoning, respectively, but can require a lot of information to be 
propagated throughout the program. The symmetry policy needs reasoning about matrix expres- 
sions expressed as a first-order quantification over all matrix entries. The vector norm policy 
is formalized in terms of the summation over entries in a one-dimensional array, and involves 
symbolic reasoning over finite sums. 

2.2 Generating Proof Obligations 

For certification purposes, the synthesis system annofufes the code with mark-up information 
relevant to the selected safety policy. These annotations are part of the schema and thus are 
instantiated in parallel with the code fragments. The annotations contain local information in the 
form of logical pre- and postconditions and loop invariants, which is then propagated through 
the code. The fully annotated code is then processed by the VCG, which applies the rules of the 
safety policy to the annotated code in order to generate the safety conditions. As usual, the VCG 
works backwards through the code. At each line, the safety conditions are generated ad the 
safety substitutions are applied. The VCG has been designed to be “correct-by-inspection”, i.e., 
to be sufficiently simple that it is straightforward to see that it correctly implements the rules 
of the logic. Hence, the VCG does not carry out any simplifications; in particular, it does not 
actually apply the substitutions but maintains explicit formal substitution terms. Consequently, 
the generated verification conditions (VCs) tend to be large and must be simplified separately; 
the more manageable simplified verification conditions (SVCs) which result are then processed 
by a first order theorem prover. The resulting proofs can be sent to a proof checker, e.g., Ivy 
[ l a  

The structure of a typical safety obligation (after substitution reduction and simplification) 
is given in Fi-we 2. It corresponds to the initialization safety of an assignment within a nested 
loop. Most of the hypotheses consist of annotations which have been propagated through the 
code and are irrelevant to the line at hand. The proof obligation also contains the local loop 
invariants together with bounds on f or-loops. Finally, the conclusion is generated from the 
safety conditions for the statement given by the corresponding safety policy. 
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2.3 Processing Proof Obligations and Connecting the Prover 

The simplified safev-&igations are exported as a number of individual proof Obligations using 
TPTP first order logic syntax. A small script then adds the axioms of the domain theory, before 
the completed proof task is processed by the theorem prover. Parts of the domain theory are 
generated dynamically in order to facilitate reasoning with (small) integers. The domain theory 
is described in more detail in Section 3.3. 

The connection to a theorem prover is straightforward. For provers that do not accept the 
TPTP syntax, the appropriate TPTP2X-converter is used before invoking the theorem prover. 
In the experiments, run-time measurement and prover control (e.g., aborting provers) were per- 
formed with the same TPTP tools as in the CASC competition [30]. 

3 Experimental Setup 

3.1 Program Corpus 

As a basis for the certification experiments we generated annotated programs from four dif- 
ferent specifications which were written prior to and independently of the experiments. The 
size of the generated programs ranges from 43 1 to 1157 lines of commented C-code, includ- 
ing the annotations. Table 2 in Section 4 gives a more detailed breakdown. The first two 
examples are AUTOFILTER specifications. dsl is taken from the attitude control system of 
NASA's Deep Space One mission [35]. iss specifies a component in a simulation environ- 
iiient for the Space Shuttle docking procedure at the International Space Station. In boih cases, 
the generated code is based on Kalman filter algorithms, which make extensive use of matrix 
operations. The other two examples are AUTOBAYES specifications which are part of a more 
comprehensive analysis of planetary nebula images taken by the Hubble Space Telescope (see 
[7, 101 for more details). segm describes an image segmentation problem for which an iter- 
ative (numerical) statistical clustering algorithm is synthesized. Finally, gauss fits an image 
against a two-dimensional Gaussian curve. This requires a multivariate optimization which is 
implemented by the Nelder-Mead simplex method. The code generated for these two examples 
has a substantially different structure from the state estimation examples. First, the numerical 
optimization code contains many deeply nested loops. Also, some of the loops are convergence 
loops which have no fixed upper bounds but are executed until a dynamically calculated error 
value gets small enough. In contrast, in the Kalman filter code, all loops are executed a fixed 
@e., known at synthesis time) number of times. Second, the numerical optimization code ac- 
cesses all arrays element by element and contains no operations on entire matrices (e.g., matrix 
multiplication). The example specifications and all generated proof obligations can be found at 
http://ase.arc.nasa.gov/autobayes/ijcar. 

3.2 Simplification 

Proof task simplification is an important and integral part of our overall architecture. However, 
as observed before [12, 8, 281, simplifications-even on the purely propositional level-can 
have a significant impact on the performance of a theorem prover. In order to evaluate this 
impact, we used six different rewrite-based simplifiers to generate multiple versions of the safety 
obligations. We focus on rewrite-based simplifications rather than decision procedures because 
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rewriting is easier to certify: each individual rewrite step T S can be traced and checked 

Baseline The baseline for all simplifications is given by the rewrite system 70 which eliminates 
the extra-logical constructs (including explicit formal substitutions) which the VCG employs 
during the construction of the safety obligations. Our original intention was to axiomatize these 
constructs in first-order logic and then (ab-) we the provers for this elimination step, but that 
turned out to be infeasible. The main problem is that the combination with equality reasoning 
produces tremendous search spaces. 
Propositional Structure The first two proper simplification levels only work on the proposi- 
tional structure of the obligations. TV,* splits the few but large obligations generated by the 
VCG into a large number of smaller obligations. It consists of two rewrite rules Vx - P A Q - 
(Vx - P )  A (Vx - Q) and P + (Q A R) -+ (P  +- Q )  A (P  +- R) which distribute universal 
quantification and implication, respectively, over conjunction. Each of the resulting conjuncts 
is then treated as an independent proof task. T,, simplifies the propositional structure of the 
obligations more aggressively. It uses the rewrite rules 

.independently, e.g., by using an ATP to prove that S +l' holds. - - ._ _ .  

7 true -false 7 false cvf true 
t rueAPcv fP  false A P -false 
trueVP-true false V P cvf P 
P+true--ttrue P + f a l s e - l P  
t r u e + P - P  false + P - true 
P * P -2 tnlP ( P A  &) + P -+ true 
P + (Q ==+ R) - ( P  A Q )  + R Vx . true - true 

in addition to the two rules in Tv,~ .  The rules have been chosen so that they preserve the overall 
structure of the obligations as far as possible; in particular, conjunction and disjunction are not 
distributed over each other and implications are not eliminated. Their impact on the clausifier 
should thus be minimal. 
Ground Arithmetic This simplification level additionally handles common extensions of plain 
first-order logic, i.e., equality, orders, and arirhmeuc. Tne rewiiie systeiii Td C O E + ~ S  p i e s  fer 
the reflexivity of equality and partial orders as well as the irreflexivity of strict orders, although 
the latter rules are not invoked on the example obligations. In addition, it normalizes orders into 
5 and > using the (obvious) rules 

x>y-y<x 'x>y-x<y 
x<ycvfy>x 'x<y-x>y 

The choice of the specific orders is arbitrary; choosing for example < instead of > makes no 
difference. However, a further normalization by elimination of either the partial or the strict 
order (e.g., using a rule x < y - x < y V z = y) leads to a substantial increase in the formula 
size and thus proves to be counter-productive. 

Tmd also contains rules to evaluate ground integer operations (i.e., addition, subtraction, 
and multiplication), equalities, and partial and strict orders. Moreover, it converts addition and 
subtraction with one small integer argument @e., n 5 5 )  into Pressburger notation, using rules 
of the form n+l - succ(n) and n-1 -+ pred(n). Formany safety policies (e.g., init), terms of 
this form are introduced by relativized bounded quantifiers (e.g., Vx. 0 5 x 5 n - 1 + P ( x ) )  
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and contain the only occurrences of arithmetic operators. A final group of rules handles the 
interaction between succ and pred, as well as with the orders. 

succ(pred(z)) rvf x 
succ(z) 5 y -4 x < y 
x 5 pred(y) rvf x < y 

pred(succ(z)) - z 
x > pred(y) - x 2 y 
succ(z) > y rvf x 2 y 

Language-Specific Simplification The next level handles constructs which are specific to the 
program verification domain, in particular array-expressions and conditional expressions, en- 
coding the necessary parts of the language semantics. The rewrite system xmay adds rewrite 
formulations of McCarthy’s array axioms [17], i.e., seZ(upd(a, i, v ) , j )  -4 i = j ? : seZ(a,j) 
for one-dimensional arrays and similar forms for higher-dimensional arrays. Some safety poli- 
cies are formulated using arrays of a given dimensionality which are uniformly initialized with a 
specific value. These are represented by a constarray-term, for which similar rules are required, 
e.g., seZ(constarray(v, d) ,  i) -4 v. 

array, lead to nested conditionals which in turn lead to an exponential blow-up during the sub- 
sequent language normalization step. Tmay thus also contains two rules true ? IC : y - x and 
false ? x : y -4 y to evaluate conditionals. 

In order to properly assess the effect of these domain-specific simplifications, we also ex- 
perimented with a rewrite system Tmaay*, which applies the two sel-rules in isolation. 
Policy-Specific Simplification The most aggressive simplification level Tp,,cy uses a number of 
rules which are fine-tuned to handle situations that frequently arise with specific safety policies. 
The init-policy requires a rule 

Npqtpd ~ e l / ~ i p d - W ~ ~ ,  J+& f r c ~ ~  S ~ ~ X Z Z X S  ~f b&1,5+iA Z ~ ~ ~ ~ X I C Z Z  Kj tk S m i C  

Vx.0 5 x 5 n +- (x # 0 A ... Ax # n =+ P )  - true 

which is derived from the finite induction axiom to handle the result of simplifying nested 
sellupd-terms. For in-use, we need a single rule def = use - false, which follows from the fact 
that the two tokens def and use used by the policy are distinct. For symrn, we make use of a 
lemma about the symmetry of specific matrix expressions: A + BCB* is already symmetric 
if (but not only if) the two matrices A and C are symmetric, regardless of the symmetry of B. 
The rewrite rule 

sel(A + BCBT7 i , j )  = seZ(A + BCBT7j, i) 
“vf seZ(A,i,j) = seZ(A,j,i) AseZ(C,i,j) = seZ(C,j,i) 

formulates this lemma in an element-wise fashion. 

are added to handle the inductive nature of finite sums: 
For the nom-policy, the rules become a lot more specialized and complicated. TWO rules 

-+ P A x = Cpred(n) 2=0 Q(i )  + Cyzo Q(i) = xy=o Q(i) 

The first rule directly implements the base case of the induction; the second rule, which im- 
plements the step case, is more complicated. It requires alpha-conversion for the summations 
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as well as higher-order matching for the body expressions, both of which are, however, under 
.explicit control of this specific rewrite nile and not the general rewrite engine, and are imple- , 
mented directly as Prolog predicates. Note that the right hand side can easily be simplified into 
true by the application of further rules. A similar rule is required in a very specific situation to 
substitute an equality into a summation: 

P A  (Vi. 0 5 i 5 n =+ x = seZ(f , i ) )  + C:=oseZ(f,i) = 1 
“v) P A  (Vz -0  5 i 2 n + z =  seZ(f,i)) + xT=ox = 1 

The above rules capture the central steps of some of the proofs for the norm-policy and mirror 
the fact that these are essentially higher-order inferences. 

Another set of rewrite rules handles all Occurrences of the random number generator by 
asserting that the number is within its given range, Le., Z 5 rand(Z, u) 5 u. 

Normalization The final preprocessing step transforms the obligations into pure first-order 
logic. It eliminates conditional expressions which occur as top-level arguments of predicate 
symbols, using rules of t h e f o r m P ? T :  F = R “v) ( P  T = R) A (’P + F = R) and 
similarly for partial and strict orders. A number of congruence rules move nested occurrences of 
conditional expressions into the required positions. Finite sums, which only occur in obligations 
for the nom-policy, are represented with a de Bruijn-style variable-free notation. 
Control The simplifications are performed by a small but reasonably efficient rewrite engine 
implemented in Prolog (cf. Table 2 for runtime information). This engine does not support full 
AC-rewriting but flattens and orders the arguments of AC-operators. The rewrite rules, which 
are implemented as Prolog clauses, then do their own list matching but can take the list ordering 
into account. The rules within each system are applied exhaustively. However, the two most 
aggressive simplification levels 7, and T,,,, are followed by a structural “clean-up” phase. 
This consists of the language normalization followed by the propositional simplifications T,, 
and the finite induction rule. Similarly, T-,,. is followed by the language normalization and then 
by T v , ~  to split the obligations. 

3.3 DomainTheory 

Each safety obligation is supplied with a first-order domain theory. In our case, the domain 
theory consists of a fixed part which contains 44 axioms, and a set of axioms which is gener- 
ated dynamically for each proof task. The static axioms define the usual properties of equal- 
ity and the order relations, as well as axioms for Pressburger arithmetic and for the domain- 
specific operators (e.g., m y  accesses and matrix operations). This part axiomatizes 22 dif- 
ferent predicate and function symbols. The dynamic axioms are added because most theorem 
provers cannot calculate with integers, and to avoid the generation of large terms of the form 
succ(. . . succ(0). - .). For all integer literals n, m in the proof task, we generate the coriespond- 
ing axioms of the form m > n. For small integers @e., n 5 5), we also generate axioms 
for explicit successor-terms, i.e., n = succ”(0) and add a finite induction schema of the form 
Vx - 0 5 x 2 n =+ (x = 0 V x = 1 V . . . V x = n). In our application domain, these axioms are 
needed for some of the matrix operations; thus n can be limited to the statically known maximal 
size of the matrices. 
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3.4 Theorem Provers 

For the experiments, we selected several high-performance theorem provers for untyped first- 
order formulas with equality. Most of the provers participated in the CASC-19 [29] prover 
competition in the FOL category. We used two versions of e-setheo [20] which were both 
derived from the CASC version. For e-setheo-csp03F, Flotter V2.1 131, 321 was used to con- 
vert the formulas into a set of clauses instead of the clausifier provided by the TPTP toolset 
[30]. e-setheo-new is a recent development version with several improvements over the original 
e-setheo-csp03 version. Both versions of Vampire [27] have been taken directly “out of the 
box”-they are the versions which were used at CASC-19. Spass 2.1 was obtained from the 
developer’s website [31]. For comparison purposes, we also used Otter V3.2 1191, which has 
been essentially unchanged since 1996. 

In the experiments, we used the default parameter settings and none of the special features of 
the provers. The only exception is Otter, where the developer provided an alternative parameter 
setting since the defaults proved unsuitable. For each proof obligation, we limited the run-time 
to 60 seconds: the CPU time actually used was measured with the TPTP-tnnls on a 2 4GHz dnal 
processor standard PC with 4GB memory. 

- 

4 Empirical Results 

4.1 Generating and Simplifying Obligations 

Table 2 summarizes the results of generating the different versions of the safety obligations. For 
each of the example specifications, it lists the size of the generated programs (without annota- 
tions), the applicable safety policies, the size of the generated annotations (before propagation), 
and then, for each simplifier, the elapsed time T and the number N of generated obligations. 
The elapsed times include synthesis of the programs as well as generation, simplification, and 
file output of the safety obligations; synthesis alone accounts for approximately 90% of the 
times listed under the array safety policy. In general, the times for generating and simplifying 
the obligations are moderate compared to both generating the programs and discharging the 
obligations. All times are CPU times and have been measured in seconds using the Unix time 
command. 

Almost all of the generated obligations are valid, i.e., the generated programs are safe. The 
only exception is the in-use-policy which produces one invalid obligation for each of the d s l  
and iss examples. This is a consequence of the original specifications which do not use all 
elements of the initial state vectors. The invalidity is confined to a single conjunct in one of 
the original obligations, and since none of the rewrite systems contains a distributive law, the 
number of invalid obligations does not change with simplification. 

The first four simplification levels show the expected results. The baseline T@ yields rela- 
tively few but large obligations which are then split up by Tv,+ into a much larger (on average 
more than an order of magnitude) number of smaller obligations. The next two levels then elim- 
inate a large fraction of the obligations. Here, the propositional simplifier Tmp alone already 
discharges between 50% and 90% of the obligations while the additional effect of evaluating 
ground arithmetic (7;VJ is much smaller and generally well below 25%. The only significant 
difference occurs for the array-policy where more than 80% (and in the case of ds 1 all) of the 
remaining obligations are reduced to true. This is a consequence of the large number of obliga- 
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171 
195 
20 
118 

dsl I 4311arrq 

6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121 
3.8 54 5.0 155 3.8 41 3.6 30 3.8 32 5.2 157 3.6 14 
21.0 69 24.9 687 21.2 98 21.0 20 20.9 20 24.3 687 21.3 20 
49.8 85 65.5 1417 54.1 395 53.2 324 53.9 316 66.2 1434 54.3 316 

I linit 
in-ust 

inif 
in-ust 

I I linir 

Hi-= gauss 1039 array 
I I init 

Table 2: Generation of safety obligations 

tions which have the form l n  5 n + P for an integer constant n representing the (lower or 
upper) bound of an array. The effect of the domain-specific simplifications is at first glance less 
clear. Using the array-rules (T-,,*) only generally leads to an increase over Ty,+ in the number 
of obligations; this even surpasses an order of ma,onitude for the sym-policy. However, in 
combination with the other simplifications (Tm,,), most of these obligations can be discharged 
again, and we geiieilly aid iq wi't less O~!&&OT?S emA behe;  again, the symm-policy is the 
only exception. The effect of the final policy-specific simplifications is, as should be expected, 
highly dependent on the policy. For in-use and norm a further reduction is achieved, while the 
rules for irrit and symm only reduce the size of the obligations. 

4.2 Running the Theorem Provers 

Table 3 summarizes the results obtained from running the theorem provers on all proof obli- 
gations (except for the invalid obhgahons from rhe in-use-ycjkyj, pic@ by &%rent 
simplification levels. Each line in the table corresponds to the proof tasks originating fiom a 
specific safety policy (array, init, in-use, symm, and norm). Then, for each prover, the percent- 
age of solved proof obligations and the total CPU time are given. Note that T ,  also includes 
the actual CPU times for failed proof attempts. 

For the fully simplified version (T,,,,), all provers are able to find proofs for all tasks orig- 
inating from at least one safety policy; e-setheo-csp03F can even discharge all the emerging 
safety obligations This result is central for our application since it shows that current ATPs can 
in fact be applied to certifj the safety of synthesized code, confirming our first hypothesis. 

For the unsimplified safety obligations, however, the picture is quite Merent. Here, the 
provers can only solve a relatively small fraction of the tasks and leave an unacceptably large 
number of obligations to the user. The only exception is the a~~~y-pol icy ,  which produces by far 
the simplest safety obligations. This conbns  our second hypothesis: aggressive preprocessing 
is absolutely necessary to yield reasonable results. 

Let us now look more closely at the different simpfification stages. Breaking the large 
original formulas into a large number of smaller but independent proof tasks (Tv,+) boosts the 
relative performance considerably. However, due to the large absolute number of tasks, the 
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11 e-setheo03F I e-setheo-new Vampire6.0 

95.5 178.1 
8.5 9224.9 

57.9 773.1 
16.7 744.9 
50.0 1316.5 
99.9 240.5 
95.0 14482.2 
95.3 4183.7 
90.2 3315.8 
87.7 1359.9 
99.3 187.5 
84.9 10598.0 
70.1 3806.2 
58.9 1596.7 
53.7 1286.7 

100.0 12.7 
~ 2 . 5  10239.6 
69.8 3718.1 
62.5 1455.5 
66.7 736.7 

100.0 12.7 
100.0 1401.3 
100.0 262.6 
99.1 963.9 
62.5 791.7 
99.9 240.6 
99.8 4952.1 
99.8 793.5 
99.6 3277.3 
86.6 1449.9 

100.0 12.0 
100.0 1418.9 
100.0 262.6 
99.1 1048.8 
00.01 108.01 

TATP 
Vampire5.O Otter 

95.5 102.1 .83.6 870.; 
8.5 8251.0 6.6 6534.; 

47.4 645.5 35.7 16.( 
16.7 723.6 16.7 847.5 
48.1 1327.1 31.5 1537.7 
99.8 152.4 99.5 714.2 
93.5 14203.4 92.0 19310.5 
94.3 4206.8 96.6 3014.; 
91.3 1789.2 80.8 2160.1 
87.1 1276.0 76.1 2051.t 
99.3 132.6 97.1 621.4 
83.2 10546.8 78.8 13461.t 
65.0 3960.6 78.5 2729.2 
58.9 1424.8 19.6 2002.2 
51.2 1275.3 9.8 2036.2 

100.0 1.7 100.0 20.7 
S2.G’ 9z.io.2 85.7 7ya3.e 
67.4 3561.1 64.0 3715.3 
58.9 1389.8 26.8 1828.2 
53.3 858.0 50.0 1007.7 

100.0 1.7 100.0 20.2 
99.0 785.1 95.7 2468.7 
87.2 525.2 85.1 613.7 
99.0 922.7 98.2 872.9 
50.0 858.6 59.4 896.2 
99.9 153.1 99.5 711.9 
98.4 6000.1 95.5 13680.4 
99.6 925.9 99.5 1427.8 
99.6 1807.0 83.5 1682.8 
86.0 1276.2 76.4 2078.3 

100.0 1.6 100.0 19.7 
99.0 782.5 95.7 2456.7 
70.0 524.8 65.0 601.1 
99.0 926.9 99.3 501.1 
71.41 241.81100.01 69.7 

% TAP % TAP simp.lpolic: - 
70 

7prop 

L a 1  

Lay 

Lray. 

T&,, 

aria) 
init 
in-us, 
symm 

aria) 
norm 

init 
in-us( 
symm 
norm 
array 
init 
in-ust 
symm 

array I .  . - 
in-ust 
symm 

array 
init 
in-ust 
symm 
norm 
array 
init 
in-use 
symm 

norm 

inrt 

norm 

norm 
array 
init 
in-use 
symm 
norm 

1575.8 
19.8 

823.9 
343.2 

1629.3 
1583.1 
5918.0 

13536.1 
5139.0 

11787.7 

96.4 
75.0 
68.4 
38.9 
51.9 
99.8 
97.4 
99.1 
88.5 
84.5 
99.3 
92.8 
94.9 
48.2 
41.5 

100.0 
93.3 
94.8 
51.8 
50.0 

100.0 
99.7 

100.0 
99.4 
59.4 
99.9 
99.5 
99.8 
99.7 
86.0 

100.0 
99.5 

100.0 
99.4 

100.0 

3iqTGF 
73.4 

2898.3 
512.8 
555.3 

1224.2 
217.C 

8732.2 
1733.5 
3638.7 
1572.0 
157.5 

5469.7 
1008.3 
1911.3 
1478.2 

10.4 
.??SC).l 
1023.1 
1716.0 
940.5 

10.4 
875.8 
171.3 
746.4 
709.7 
210.8 

4574.9 
889.2 

3385.1 
1351.3 

9.9 
875.2 
170.7 
760.0 
26.2 

llO* 
164 
19 
18 
54 

457 
i177 
123 
286 
155 
275 
919 
177 
56 
41 
28 

96.4 192.4 
76.8 3000.8 
57.9 610.8 
50.0 387.7 
51.9 1282.4 
99.0 903.4 
88.4 3969.4 
59.3 819.1 
93.4 1785.9 
85.8 1422.1 
99.3 278.2 
94.7 4239.4 
86.4 1854.0 
66.1 1476.2 
46.3 1361.2 

100.0 16.2 

Table 3: Proof results and times 

94.5 
13.1 
44.4 
8.3 

51.9 
94.2 
91.7 
96.4 
90.6 
73.5 
76.4 
73.0 
77.4 
51.8 
41.5 

100.0 
3?.? 
83.1 
66.1 

absolute number of failed tasks also increases. With each additional simplification step, the 
percentage of solved proof obligations increases further. Interestingly, however, &,+ and Tmay 
seem to have the biggest impact on performance. The reason seems to be that equality reasoning 
on deeply nested terms and formula structures can then be avoided, albeit at the cost of the 
substantial increase in the number of proof tasks. The results with the simplification strategy 
Tmy*, which only contains the language-specific rules, also illustrates this behavior. The norm- 
policy clearly produces the most difficult safety obligations, requiring essentially inductive and 
higher-order reasoning. Here, all simplification steps are required to make the obligations go 
through the first-order ATPs. 

The results in Table 3 also indicate there is no single best theorem prover. Even variants of 
the “same” prover can differ widely in their results. For some proof obligations, the choice of 
the clausification module makes a big difference. The TPTP-converter implements a straightfor- 

284.5 
1759.E 
612.2 
266.1 

1341.C 
5925.C 

20784.E 
4100.2 
2341.C 
2552.5 
4080.8 

17472.2 
2768.2 
1944.4 
1484.6 

19.7 
5285.C 
2305.2 
1500.4 
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Fi,we 3: Distribution of easy (qWf < Is, white), medium (Tpm, < lOs, light grey), difficult 
(Tpmf < 60s, dark grey) proofs, and failing proof tasks (black) for the different simplification 
stages (prover: e-setheo-csp03F). N denotes the total number of proof tasks at each stage. 

ward algorithm similar to the one described in [ 161. Flotter uses a highly elaborate conversion 
algorithm which performs many simplifications and avoids exponential increase in the num- 
ber of generated clauses. This effect is most visible on the unsimplified obligations (e.g., 70 
under init), where Spass and e-setheo-csp03F-which both use the Flotter clausifier-perform 
substantially better than the other provers. 

Since our proof tasks are generated directly by a real application and are not hand-picked for 
certain properties, many of them are (almost) trivial-even in the unsimplified case. Figure 3 
shows the resources required for the proof tasks as a series of pie charts for the different simpli- 
fication stages. All numbers are obtained with e-setheo-csp03F; the figures for the other provers 
look similar. Overall, the charts reflect the expected behavior: with additional preprocessing 
and simplification of the proof obligations, the number of easy proofs increases substantially 
and the number or rmng  proof tasks decieases siiaply b i n  q.jproxiratdy 16% ta zero. R e  
relative decrease of easy proo€s from %,* to T,, and 7& is a consequence of the large number 
of easy proof tasks already discharged by the respective simplifications. 

I I ... 

4.3 Dficult Proof Tasks 
Since all proof tasks are generated in a uniform manner through the application of a safety policy 
by the VCG, it is obvious that many of the difficult proof tasks share some structural similarities. 
We have identified three classes of hard examples; these classes are duectly addressed by the 
rewrite rules of the policy-specific simplifications. 

B1 A .  . . A f3, where the 
23, are variable disjoint. These obligations can be split up into n smaller proof obligations of the 
form A + 23; and most theorem provers can then handle these smaller independent obligations 
much more easily than the large original. 

The second class contains formulas of the form s y m ( r )  + symm(diag-updates(r)). Here, 
r is a matrix variable which is updated along its diagonal, and we need to show that r remains 
symmetric after the updates. For a 2x2 matrix and two updates (i.e., roo = x and rll = y), we 
obtain the following simplified version of an actual proof task: 

Most safety obligations generated by the VCG are of the form A 

Vi, j - (0 5 i, j 5 1 =+ sel(r, i, j )  = sel(r, j ,  i)) + 
(Vk,Z - (0 5 k,l 5 1 =+ 

se+d(upd(r ,  1,L ?/I, 0, 0,4, k 1)  = Sel(uPd(uPd(r, 171, Y), o,o, 4 7 1 ,  W). 
This pushes the provers to their limits+-setheo cannot prove this while Spass succeeds here 
but fails if the dimensions are increased to 3x3, or if three updates are made. In our examples, 
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matrix dimensions up to 6x6 with 36 updates occur, yielding large proof obligations of this 

Another class of seemingly trivial but hard examples, which frequently shows up in the init- 
policy, results from the expansion of deeply nested seZ/upd-terms. These problems have the 
form 

specific form which are, qgQrovable by curre2t further preprocessing. .- - 

 vi,^'. 0 5 i < n A 0 5 j 5 n + (2 # 0 A j  # 0 A . .  .i # n A j  # n + false) 

and soon become intractable for the clausifier, even for small n (n = 2 or n = 3), although the 
proof would be easy after a successful clausification. 

simp. policy 
70 array 

inir 
in use 

T v , ~  array 
init 
in-use 

7prop array 
init 
in-use 

ZVd array 
inir 

4.4 Policy-Specific Domain Theories 

The domain theory described in Section 3.3 and used in the experiments summarized in Table 3 
contains all axioms required to prove any of the obligations; in particular, it also contains axioms 
which are specific to the symbols used only in one policy and which should thus not be required 
for any obligation from the other policies. However. experience shows that the ATPs have 
problems detecting such redundant axioms [8, 25,281. 

e-setheo03F 

% Tproof T,, % Tpmf Tmean 

96.4 61.5 0.56 96.4 131.2 1.19 
86.6 868.8 5.30 76.8 928.9 5.66 
57.9 32.0 1.68 57.9 62.4 3.28 
99.9 633.2 0.43 99.0 782.1 0.54 
98.6 7259.1 2.28 88.4 2155.1 0.68 
98.0 686.5 0.61 59.3 456.6 0.41 
99.3 125.6 0.46 99.3 156.8 0.57 
95.2 5467.7 5.95 94.7 1274.4 1.39 
87.0 179.0 1.01 86.4 283.4 1.60 

100.0 12.7 0.45 100.0 16.2 0.58 
94.7 5240.3 6.63 94.6 1342.1 1.70 

reduced theory full theory 

)in-use] 86.6) 24.81 1.42) 86.0 281.71 1.64 

Tmy- 

Tplicy 

87.21 39.51 0.841 87.21 42.91 0.91 
99.9) 23.01 0.02) 99.9) 32.5) 0.02 

init 100.0 354.5 0.61 100.0 527.6 0.91 
in-use 100.0 31.4 0.67 100.0 203.4 4.33 
array 99.9 616.3 0.42 99.9 795.4 0.55 
init 99.8 2353.4 0.62 99.7 2807.3 0.73 
in-use 99.8 1485.6 0.48, 99.8 2015.9 0.65 
array 100.0 11.7 0.45 100.0 15.0 0.58 
init 100.0 363.3 0.62 100.0 529.2 0.91 
in-use 100.0 19.4 0.97 100.0 187.9 9.39 

98.2 1923.4 0.50 98.4 2200.5 
0.021 99.61 8i:Ll 1" 

99.61 6511 100.0 0.05 100.0 0.06 
99.3 443.2 0.76 99.0 420.7 0.72 
70.0 39.0 1.95 70.0 42.5 2.13 

Table 4: Proof results and times-policy-specific domain theories 

In order to evaluate the effect of redundant axioms in our case, we used a reduced domain 
theory for the array, init, and in-use safety polices and then re-ran e-setheo-csp03F and Vam- 
pire5.0. The reduced domain theory uses the same dynamic axiom generator as the full theory 
but omits seven axioms that specify the behavior of matrix operations (Le., addition, subtrac- 
tion, multiplication, transposition, and inversion) which do not occur in the obligations resulting 
from the above policies. The reduced set thus contains 37 axioms and 17 symbols. 
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Table 4 summarizes this experiment and gives the results and times for both the reduced 
.and the original full domain theory. Note that Tpnof only includes the CPU times for success- 
ful proof attempts; T- is the average CPU time for these cases. There is no uniform trend, 
however4epending on the ATP, the applied simplifications, and the safety policy, either more 
or less tasks are proven while the proofs can become faster or slower. This non-uniform be- 
havior is likely to be a consequence of the internal architecture of the provers. Both e-setheo 
and Vampire implement multiple search strategies and then derive a schedule from the proof 
task. However, e-setheo’s scheduling algorithm seems to be more sensitive to the changes than 
Vampire’s. e-setheo never fails to prove proof tasks by switching to the reduced domain theory 
and sometimes finds a substantial number of additional proofs, in pdcular  for unsimplified or 
almost unshplified tasks. The average proof times are usually slightly better but they can vary 
widely-up to one order of magnitude in both directions (e.g., init with T,, and in-use with 
T’&,,-+). In contrast, the variation in Vampire’s results and proof times is a lot smaller and appears 
to be statistically insignificant. 

_ _  _ _ _  

5 PrcmfChecking 

For certification purposes, explicit evidence must be provided that none of the individual tool 
components can yield incorrect results. The VCG is designed so that it can be manually in- 
spected for correctness and, similarly, the rewrite rules used for simplification can be inspected 
and even individually proven correct. However, the state-of-the-art high performance ATPs in 
our syskm we coinpkatcd dz=di ,  e!&mak st‘?lc@xes, m-d nptimi7d implementations 
to increase their deductive power and obtain fast results. This makes a formal verification of 
their correctness impossible in practice. Although they have been extensively validated by the 
theorem proving community (using the TPTP benchmark library), the ATPs remain the weakest 
link in the certification chain. 

As an alternative to formally verifying the ATPs, they can be extended to generate suffi- 
ciently detailed proofs which can then be independently checked by a small and thus verifiable 
algorithm. This is the same approach we have taken in extending the synthesis system to gen- 
erate annotated code, rather than directly venfying the synthesizer. However, although this iaea 
is very simple in theory, there are currently (as of 2004) almost no proof checkers for high- 
performance ATPs. This has a number of practical reasons: 

0 Many ATPs simply do not generate the required detailed proofs, mainly due to implemen- 
tation effort and run-time requirements. 

0 On-going changes in the ATP require frequent updates and re-vexilkation of the proof 
checker. 

0 Most ATPs contain a large number of high-level inference rules (such as splitting) which 
cannot easily be expanded into sequences of low-level inferences, making the proof 
checker more complicated and thus hard to verify. 

0 Almost all ATPs work on problems in CNF, so the proof checking can only be done on 
that level, and not on the FOL level. Since clausification is often a large part of a proof, 
this reduces the confidence that proof checking can bring. 
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The notable exception is the IVY system [18] that we used in our experiments. IVY com- 
bines a clausifier and the Otter theorem prover with a proof checker. Because IVY is imple- 
mented within the ACL2 logic [15], both the clausifier and the proof checker have been verified. 
IVY thus provides the same functionality as a verified prover for first-order logic, but achieves 
relatively good performance by using Otter to find the proofs. However, the formal verification 
of the IVY clausifier and proof checker are based up finite domains [ 181 but since the imple- 
mentation of IVY does not actually rely on the finiteness, the system can be used for arbitrary 
proof tasks. 

Another limitation of IVY is shared by all existing clausification algorithms. Clausifiers 
usually take a first-order formula apart and reorganize the pieces using non-logical graph-based 
techniques. Thus, establishing traceability between the clauses (or literals) and the positions 
they had in the original formula would require substantial effort and has not yet been attempted 
in practical implementations. While this restriction makes it impossible to translate the clausal 
proof back into a first-order representation, it also has a negative influence on the prover’s 
behavior. Many ATPs can be sped up considerably if it is known which parts of the formula 
arc axioms and which belong to the conjecture. This distinchon allows the prover to apply goal- 
oriented rules. Our application naturally provides this information, but this is ignored by IVY. 
Thus, the Otter prover used within IVY can only use Otter’s auto-mode which is rather weak 
for our proof obligations. Experiments also revealed that IVY has problems in handling the full 
axiom set. With the policy-specific domain theory of Section 4.4, we obtained the following 
results for the fully simplified tasks: 100% in 34.8s for the array property, 89.2% in 4929.2s for 
init, and 65.0% in 657.5s for in-use. 

, . 

6 Traceability 

The successful application of an automated theorem prover to verification and, in particular, to 
certification problems such as we have described here, places more requirements on an ATP 
than just raw deductive power. Since the aim of certification is to provide explicit evidence that 
software meets a specified standard of safety, it is important that domain experts can assess the 
evidence for successful checks of the safety properties and any places where it is violated. 

Safety checks are typically carried out during code reviews [22], where reviewers look in 
detail at each line of the code and check the individual safety properties statement by statement. 
The successful outcome of a code review, therefore, consists of the code, where each statement 
is labelled with either “complies with property P’, or with information about the violation. This 
requires two things: (i) tracing information which links the safety obligations (or their proofs) 
to specific lines of code in the program being certified, and (ii) a summary which relates this 
detailed information back to the specification and the safety policy, while drawing attention to 
specific areas of concern. 

Existing techniques for addressing the tracing problem [ 131, however, need to be extended 
for our purposes. The required information about code locations needs to be threaded through 
all stages of our certification architecture (cf. Figure 1). Only then can the tracing information 
be obtained and displayed in the appropriate way. Even if we just want to know if a certain line 
in the code fulfills a safety property, the location information still needs to be threaded through 
the VCG and the simplifier. 

To get more detailed information, however, the tracing has to be threaded through the ATP 
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Figure 4: Comparison of proof results and certification results 

and into the proof it generates. For example, the analysis needs to reveal which other lines of 
code are actually required to satisfy a property. For variable initialization safety this can mean 
computing on which line the variable that is accessed in the current statement was initialized. 
The extraction of this information requires knowledge of which parts of the formula contributed 
to the proof, as well as their location information. This problem is aggravated by the fact that 
zest  thmrem proveE work c l r ~ l  clausal nnm.al form: which usually looses the important location 
information. 

In general, useful information extracted from an ATP can be used for purposes of auto- 
generating documentation. In [6],  we describe a safety documentation tool, which generates 
a natural language description explaining the safety of a program, by converting the VCs into 
text. This could be extended by carrying out some symbolic evaluation from the simplifier as 
an intermediate step to using the full proofs. 

- 

7 Conclusions 

We have described a system for the automated certification of safety properties of NASA state 
estimation and data analysis software. The system uses a generic VCG together with explicit 
safety policies to generate policy-specific safety obligations which are then automatically pro- 
cessed by a first-order ATP. We have evaluated several state-of-the-art ATPs on more than 25,000 
proof tasks generated by our system. With “out-of-the-box” provers, only about two-thirds of 
the tasks could be proven but after aggressive simplification, most of the provers could solve 
almost all emerging tasks. In order tc see the effects of simplification more clearly, we experi- 
mented with several preprocessing stages. Figure 4 shows (on the left) the overaU results for the 
different stages and provers. 

However, the percentage of solved proof tasks is a very ATP-centric metric; it is also some- 
what artificial because it can easily be boosted by splitting the original obligations into a larger 
number of small proof tasks (cf. the results for 7s and ‘&v,+). An empirically more meaningful 
metric for the success of this ATP-application is the percentage of solved certification tasks, 
i.e., the relative number of cases in which the ATP solves all safety obligations resulting from 
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the application of a safety policy to an individual program. Figure 4 shows this metric (on the 

dramatic change in the interpretation of the same results. The two major differences are (i) the 
numbers go down and (ii) the variation between the provers becomes larger. Both differences 
result from a few hard proof tasks which are distributed evenly over the different certification 
tasks. Consequently, empirical success is a lot harder to come by if it is defined in terms of the 
application rather than in terms of the TPTP corpus. However, as our experiments show it is 
clearly not impossible. 

It is well-known that, in contrast to traditional mathematics, software verification hinges on 
large numbers of mathematically shallow (in terms of the concepts involved) but structurally 
complex proof tasks, yet current provers are not well suited to this. Since the propositional 
structure of a formula is of great importance, we believe that clausification algorithms should 
integrate more simplification and split goal tasks into independent subtasks. Likewise, certain 
application-specific constructs (e.g., seUupd) can easily lead to proof tasks which cannot be han- 
dled by current ATPs. The reason is that simple manipulations on deep terms, when combined 
with equatlonal reasomng, can result in a nuge search space. 

Our certification approach relies on proof checking to ensure that the proofs are correct. 
However, the ATPs fare less well when assessed in these terms and more research efforts should 
go into the development of proof checkers for high-performance provers. Moreover, it is very 
difficult to get useful information from the ATPs, which can be used as a basis for documenta- 
tion. Since we believe that software certification should be one of the main application areas for 
automated theorem proving, this is clearly another area in need of further work. 

With our approach to certification of auto-generated code, we are able to automatically pro- 
duce safety certificates for code of considerable length and structural complexity. By combining 
rewriting with state-of-the-art automated theorem proving, we obtain a safety certification tool 
which compares favorably with tools based on static analysis (see [4] for a comparison). Our 
current efforts focus on extending the certification system in a number of areas. One aim is 
to develop a certificate management system, along the lines of the Programatica project [23]. 
We also plan to combine our work on certification with automated safety and design document 
generation [6] tools that we are developing. Finally, we continue to integrate additional safety 
properties. 

right) for the different simplification stagesand provers. This change in perspective leads to a _, L _.- 
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